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Noise correlation length effects on a Morris-Lecar neural network
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The role of spatially correlated stochastic perturbations on a Morris-Lecar neural network subject to an
aperiodic subthreshold signal is analyzed in detail. Our results suggest that optimum signal-to-noise ratios can
be obtained for two critical noise intensities due to the interplay of the subthreshold Poisson process and the
correlated Gaussian forcing. For the second peak, most of the cells are periodically excited, the information
transfer is enhanced, and a collective behavior develops measured in terms of the averaged activity of the
network. The maximum signal-to-noise ratio increases with the correlation length, although it saturates for
global coupling. It was found that there is a range of mean frequencies of the subthreshold signal that increases

the signal-to-noise ratio output.
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I. INTRODUCTION

In the last years one of the most important subjects of
research has been the study of neuronal behavior [1]. The
human brain is probably the most complex system we know.
The number of its individual parts, the neurons, is estimated
to be one hundred billion. A neuron can be connected with
up to ten thousand other neurons. Other characteristic fea-
tures of neurons have long been studied, and this field is still
subject of intense investigations both experimental and the-
oretical. At any rate, it is well-established that neurons are
highly nonlinear elements. At the same time it is evident
from our daily experience that these neurons must cooperate
in a well-coordinated fashion, as in the sequencing of move-
ments or processes of pattern recognition, speech production,
and so on. This high coordination becomes also macroscopi-
cally visible through magnetoencephalogram (MEG) and
electroencephalogram (EEG) measurements of brain activity
under different circumstances. To fully understand the
mechanism needed to obtain this coordination is one of the
most important subjects of study in neurobiology [1,2].

On the other hand, the noisy environment in which the
brain works requires the introduction of stochastic perturba-
tions in the deterministic models of neural systems to simu-
late the real behavior of the brain system [3,4]. Initially the
noise was considered a destructive factor in the behavior of
dynamical systems. However, several studies have shown
that, in many complex systems, weak periodic signals can be
strengthened by intermediate noise levels [5]. Most studies
of this phenomenon, known as stochastic resonance (SR),
have been on the enhanced system response to subthreshold
periodic signals [6]. A close relative of SR (also known as
“internal” or “autonomous” stochastic resonance) is the phe-
nomenon of coherence resonance (CR) [7,8], wherein noise
enhances the coherence of inherent modes of the system
without the presence of periodic forcing as in SR. Coupling
strength has been shown to enhance SR in arrays of nonlin-
ear elements, which is known as array enhanced SR (AESR)
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[9]. Finally, some studies have examined the effect of aperi-
odic subthreshold signals in systems forced by noise, and as
in SR, there is an optimal noise level for information transfer
in aperiodic stochastic resonance (ASR) [10,11]. All these
phenomena can be summed up in the following sentence:
Noise sources, adequately coupled to a nonlinear system,
may give rise to a rich new phenomenology that is not
present in the deterministic system. Further research in neu-
roscience has shown that random noise may improve the
human brain’s ability to process information; these studies
have shown that the visual-processing region of the human
cortex responds better to an external periodic stimulus when
external noise is also applied [12].

The neurons are subject to large numbers of random syn-
aptic inputs and other endogenous noise. As a first approxi-
mation, and in order to simplify the modeling, these stochas-
tic perturbations can be considered as Gaussian uncorrelated
noises. However, the presence of correlation in response
variation has been suggested to improve the behavior of a
neuronal system, thus suggesting the presence of correlation
in input noise [13,14]. Previous work reveals the importance
of spatial correlation in the behavior of neural networks
[15-17]. In general, the effect of correlated noise depends on
how signals are combined, and although correlation may ei-
ther aid or hinder noise removal, its impact on the amount of
information transmitted by an ensemble of neurons may be
profound [18]. In this paper, we will analyze the role of finite
noise correlation lengths on the transmission of aperiodic
subthreshold signals on a Morris-Lecar neural network.

The model developed by Morris and Lecar was first used
to describe oscillations in the giant muscle fiber of barnacles
[19]. Because it has biophysically meaningful and measur-
able parameters, the model became quite popular in the com-
putational neuroscience community since it only needs two
equations for the voltage-gated ionic currents, Ca’>* and K*.
The model can exhibit various types of spiking, although
tonic bursting occurs only when an additional equation is
added [20]. Depending on the parameters used in the model,
neurons can belong to types I or II of neural excitability
[21]. For neurons of type I the frequency of tonic spiking
depends on the strength of the input. The ability to fire low-
frequency spikes when the input is weak is called type I
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excitability. Type I excitable neurons can encode the strength
of the input into their firing rate and are difficult to synchro-
nize. On the other hand, some neurons cannot fire low-
frequency spike trains. That is, they are either quiescent or
fire a train of spikes with a certain relatively large frequency.
Such neurons are called type II excitable. Their firing rate is
a poor predictor of the strength of stimulation [22]. The ef-
fect of random forcing on the Morris-Lecar model for both
type I and II cases was recently considered [23].

II. MODEL

Throughout this paper we have used a coupled neuronal
network composed of Morris-Lecar units. The dynamic
equations for the network are described as follows:

dv,
€ = lionie Vi W) + (1),

dWi WOC(V,) - Wi (1)

dr (V)
Here V; is the membrane potential (in millivolts), C
=1 pF/cm? the capacity of the membrane, W; is the activa-
tion variable for potassium, and i runs from 1 to N (number
of neurons). All currents are in units of microamperes per
square centimeter (4A/cm?) and time ¢ is measured in mil-
liseconds. The ionic current I;,,,.(V;, W;), has three compo-
nents

Lionic(Vis W) = gcaee(Vi) (Vi = Vi) + gk Wi(V; = Vi)
+g(Vi=Vp), (2

and  m.(V,)=0.5{1+tanh[(V,=V)/V,]},  w.(V,)=0.5{1
+tanh[(V,=V3)/V,]}, and 7y/(V;)=/cosh[(V,=V3)/2V,].
Parameters are V;=-0.01, V,=0.15, V5=0.1, V,=0.145,
gca=1.0, gx=2.0, g,=0.5, V,=1.0, V=-0.7, V; =-0.5, and
¢=5.0 (all conductances are in units of milliseconds per
square centimeter and reversal potentials in millivolts) [24].

Here, we assume that each neuron i is subject to a differ-
ent external current I7"(t) consisting of a white Gaussian
noise with zero mean correlated in space plus a train of
square pulses firing at times t,’ (j=1,...,M) generated by a
random Poisson process P(r) with mean A

M
I7(1) = 1,0 20 [O(s)) = O(s; - )] + (1), (3)
j=1

where sj=t—t{, the pulse width 7'=1 ms, and O(s) is the
Heaviside function. The trains of square pulses are supposed
to be mutually independent for all neurons. The value of
Lx=0.4 uA/cm? was chosen such that the signal is sub-
threshold without noise.

In Eq. (3), the spatially correlated noise &(7) is obtained
as a linear combination of a more simple noise field. Here,
we follow a similar numerical implementation as in Refs.
[25,26]. Then, the noise in each lattice cell at time 7 is
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&) =———
\2m+1 i—m<j<i+m

&(0), (4)

where the index j labels a domain of 2m cells around cell i,

and a circular geometry is considered. & is a white Gaussian
noise in lattice cell i, statistically independent of the other
lattice points (white noise in space), whose correlation func-
tion is given by

(Eu(NE,(1") =2D8, 8t 1), (5)
and noise intensity D (uA?/cm*). The noise &(f) consists of

the mixing of the values of the original noise &(r) for a finite
number (2m+1) of neighboring cells, and the factor
(2m+1)~2 measures the weight with which each neighbor
contributes.

The output of the network [14] is defined as

N
) =~ 3 01V, (0) -V, ©
i=1

where V,, is the firing threshold taken as O mV. The
asymptotic value [°/(t— ) is regarded as the averaged ac-
tivity over the neurons. The signal-to-noise output (SNR) is
defined as 101log,o(S/B), with S and B representing the
maximum signal strength in the power spectrum of 1°“/(¢)
and the mean amplitude of the background noise, respec-
tively.

To estimate the correlation between the aperiodic input
stimulus, the Poisson process P(t), and the system response
I°"" on a dynamical basis, we use the cross-correlation coef-
ficient (power norm) defined by [10,11]

Co= (U™ ={I"))(P = (P)))s ()

where (), denotes time averaging and P is the contribution of
the Poisson input signal to the external current, Eq. (3), of
any cell in the array. Equation (7) is a measure of the coin-
cidence fidelity between the subthreshold signal and the
noise-induced system response.

In this paper, we study the effects of noise (4) on the
firing capability of the neuronal network as the noise ampli-
tude D and the correlation length m are varied. Equation (1)
was numerically integrated using an explicit Euler method
with a time step of Ar=10"* ms. The number of neurons in
the network was set to N=101 and the mean period of the
Poisson process to A=50 ms unless otherwise specified. Av-
erages over 15 different noise realizations were performed to
obtain the results that follow below.

II1. RESULTS

The response of the neural network to noise intensity is
shown in Figs. 1 and 2 for a network consisting of uncorre-
lated cells (m=0) and globally coupled cells (m=42), respec-
tively. For both cases and low noise intensity values (a)—(c),
the signal is most of the time subthreshold and occasionally
some spiking occurs due to noise, Figs. 1(a) and 2(a), with
period equal to the mean of the Poisson process, \. The
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FIG. 1. Uncorrelated network (m=0). Time
series of Vi(r) and I,,(r) and its power
spectrum for two different values of the noise
intensity: D=2X10"* uA%/cm* (a)-(c) and D
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output of the network, Eq. (6), shows poor correlation among
neurons most of the time, only 0.2% of cells firing synchro-
nously for m=0% and 8% for m=42; that is due to the
Morris-Lecar network being a type I neural system. On the
other hand, increasing the noise amplitude (d)—(f) leads to an
increase in the spiking activity (d), although it is more regu-
lar for highly correlated cells than for uncorrelated ones. For
m=42, the spiking behavior of a single cell is nearly periodic
as well as the output of the network, but with a period
smaller than \. In both cases, I°“(t) oscillates [Figs. 1(c),
1(f), 2(c), and 2(f)] with a frequency approximately equal to
the mean frequency of oscillation of a neuron forced with a
constant value of I* [24].
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Figure 3 depicts the SNR output as a function of noise
intensity D for three different values of m. Each curve pre-
sents a similar behavior, namely two maxima of the SNR
develop for two different noise intensities. Besides, these
maxima shift to higher values as the correlation length m
increases. For the limit case D — 0, the noise vanishes and
the deterministic subthreshold case is recovered, so I°“(t)
remains zero always and SNR — 0. For high noise intensities
SNR goes to zero since the spectrum becomes broadband.
Noise has the effect of randomizing the spike firing times,
giving rise to useless spikes as well. In most neurons the
saturation level is reached and the SNR diminishes as noise
increases. Both maximum SNR values are more pronounced
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FIG. 2. Globally correlated network (m=42).
Time series of Vi(¢) and I,,(r) and its power
spectrum for two different values of the noise in-
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FIG. 3. (Color online) Signal-to-noise ratio
(SNR) as a function of noise amplitude D for
three different values of the correlation length m.
| Dots represent average values over 15 different
realizations of noise seeds.
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for relatively large values of m as shown in Fig. 3. The
optimal noise intensity and the values of both SNR maxima
shift towards larger values as the noise correlation length m
increases as shown in Fig. 4. For the first maximum, noise is
large enough to excite some neurons beyond the threshold
only when a subthreshold peak (provided by the Poisson
distribution) is available, raising the mean firing rate of the
network. Increasing the noise intensity, the SNR diminishes
as expected until above some critical value of the noise in-
tensity each neuron oscillates periodically with a similar in-
terspike interval to a coupled neuron forced with a constant
value of /. Then, a second maximum for the SNR devel-
ops.

In order to clarify the existence of both maxima in Fig. 3,
we have drawn both components of the SNR, S(D) and
B(D), in Fig. 5. B(D) clearly grows logarithmically, while
S(D) shows two plateaus just after a sudden increase at some
critical noise intensity. As a result, the ratio S/B shows two
maxima. In terms of the mean firing rate of the network,
these two plateaus correspond to a different activity of the
ensemble of neurons which is shown in terms of the
asymptotic value of I°“/(r) in Figs. 5(b) and 5(c). Note that
the activity of the network linearly increases with noise am-
plitude, but with a larger slope above some critical noise
intensity. Then, all pulses are excited above the threshold and

the network shows a collective behavior close to synchroni-
zation. In this sense, Fig. 6 shows the cross-correlation coef-
ficient C, as a function of noise amplitude, quantifying the
input-output correlation for two different values of the cor-
relation length m. Curves with m # 0 exhibit a minimum that
corresponds to the optimal noise level for maximum infor-
mation transfer. For m — 0 the minimum diminishes to nearly
zero, since 12" = ([°""), [see Fig. 1(e)]. For large noise ampli-
tudes, an overall increase of C is observed as I°“'—(I°"'),
>0 most of the time. C, is negative near the minimum value,
because the variables I°“/(r) and P(¢) exhibit a time delay
between the sequence of spikes in the input Poisson signal
and the response of the system. The optimal noise intensities
coincide with those obtained for the second maximum of the
SNR above, describing once more that in this case most of
the cells spike together at the rate indicated by the Poisson
subthreshold process. On the other hand, Cy(D) does not
show a singular behavior for noise intensity values corre-
sponding to the first maximum of the SNR shown in Fig. 3.
For this interval of noise amplitudes, input-output signal co-
incidence rarely occurs and Cy(D)=0.

The influence of the mean period of the Poisson process A
and the number of neurons N are depicted in Fig. 7. The
network is more sensitive to the input signal, Eq. (3), when
the mean of the Poisson process N is equal to the mean
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FIG. 4. (Color online) Noise intensity (a) and
maximum SNR (b) as a function of the correla-
tion length m. Solid line (circles) corresponds to
the first peak in Fig. 3, while the dashed line (tri-
angles) corresponds to the second peak. Error
bars corresponding to the different noise realiza-
tions are only shown for the first peak in order
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FIG. 5. (a) Maximum signal strength in the

i power spectrum S(D) (solid line) for I°“/(¢) and
mean amplitude of the background noise B(D)
(dashed line) as a function of noise (m=42).

Asymptotic value [?“/(r—) as a function of
noise amplitude for two different values of m
(b.c).
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period of oscillation of a single neuron. This resonant behav-
ior is shown in Figs. 7(a) and 7(b), where both maxima of
the SNR take a relatively large value for A"~ 82 ms, inde-
pendently of the correlation length m. For m— 0, the noise
intensity corresponding to SNR!  diminishes, so V(1) is
subthreshold most of the time, and the expected resonant
behavior at \* is masked by the decreasing behavior of
SNR! (\). That is, the network is more sensitive to a cor-
related noise input forced with a subthreshold signal within a
range of mean periods. This interval of N’s enlarges or re-
duces with m, but does not change for large enough values of
N. In fact, the maximum SNR diminishes, attaining a nearly
constant value with increasing N [Fig. 7(c)].
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IV. CONCLUSIONS

We have investigated the effect of noise correlation length
on a Morris-Lecar neural network. Stochastic perturbations,
inherent to the neural system, play an important role in its
dynamical behavior as they can act as a coupling parameter.
Increasing the noise intensity leads to two maximum values
of the SNR output, which are clearly shown as the noise
correlation length increases. The first maximum corresponds
to the case where cells occasionally are excited above the
threshold, but the cooperative behavior between cells 17 is
low enough to contribute to the SNR. Here, the combined
effect of the subthreshold random Poisson process plus the
correlated Gaussian noise contributes to the generation of
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FIG. 6. (Color online) Cross-correlation coef-
ficient C;, as a function of noise amplitude D for
I two different values of the correlation length m.
! Dots represent average values over 15 different
realizations of noise seeds.
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superthreshold spikes and then to an increase of the SNR
with noise. On the other hand, for the second maximum most
of the neurons are periodically excited at nearly the mean
frequency of a single neuron, and the synchronization among
cells reaches the maximum possible value, thus giving rise to
a larger value of § in the SNR than for the first maximum,
but, due to the larger noise intensity, the second peak ampli-
tude is smaller. In this case, the correlated Gaussian noise is
the most important contribution to the existence of this sec-
ond peak. In addition, for the second peak the information
transfer is maximized by the presence of noise, as it is shown
by the unimodal structure of the curve Cy(D) in Fig. 6, and it
is optimized for an intermediate noise intensity level.

Our results suggest that increasing the noise correlation
length leads to an increase of the SNR output. This behavior
is different to that recently observed by Wang et al. [14], as
their model correspond to type II neurons. Moreover, as the
number of neurons that receive a correlated input increases, a
range of mean periods for the subthreshold signal is selected
as the most indicated in order to maximize the SNR. For type
I deterministic neurons, as the value of I{(¢) in Eq. (3) is
smoothly increased, the activity of the network increases as
well. Neurons reach a saturation value, but synchronization
is never attained (I°**<1). For the stochastic network, as the
correlation length is increased, higher values of the noise
intensity are also needed in order to attain a maximum value
for the SNR (Fig. 4). Then, a saturation level is attained and
the mean value of I° is always smaller than 1 as for the
deterministic case. This result corroborates the fact that neu-

ral networks must be weakly connected to work correctly,
i.e., increasing the correlation among neurons, beyond some
critical value, does not contribute significantly to the dy-
namical behavior of the network.

In conclusion, in this paper we have shown that spatially
correlated noise can play a constructive role in optimizing
neuronal response to aperiodic subthreshold stimuli. Because
the input signal is aperiodic, the behavior described in this
paper can be interpreted as a form of ASR. The signal-
processing capabilities of the Morris-Lecar network are op-
timized in terms of enhancement of the information transfer
at intermediate noise levels and on time scales of the aperi-
odic subthreshold input signal that are comparable to the
characteristic time scale of the responding system. On the
other hand, increasing the correlation length, similarly to in-
creasing the coupling strength, leads to an enhancement of
the SNR and the cross-correlation coefficient as it happens
for AESR, that in our case could be named array enhanced
aperiodic stochastic resonance (AEASR). Nevertheless, the
study should continue with a more complex configuration of
the stochastic input provided for the use of more realistic
spatial correlations, and the use of temporal correlations, for
example Ornstein-Uhlenbeck processes [26]. The use of
other aperiodic input signals with different underlying dy-
namics should also be considered.
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